OG Tube/Bougie vs. Suction Calibration System During Laparoscopic Sleeve Gastrectomy

Rose Huang, MSBME
Michel Gagner, MD, FRCSC, FACS, FASMBS

Hospital Du Sacre Coeur, Montreal, QC, Canada
August 26-30, 2014
Montreal, Canada
OG Tube/Bougie vs. Suction Calibration System During Laparoscopic Sleeve Gastrectomy

Rose Huang, MSBME
Michel Gagner, MD, FRCS, FACS, FASMB
Hospital Du Sacre Coeur, Montreal, QC, Canada

Introduction
Expert consensus recommends a bougie should be in place when a sleeve gastrectomy is fashioned. However, this requires three gastric insertions: OG tube for decompression, bougie for sleeve sizing and OG tube for leak test. (Fig. 1A). Clinical risks of the current recommendation includes esophageal perforation, accidental stapling, and corkscrewing of the staple line.

Objective
The patient safety profile can be improved by reducing the above-mentioned steps. The aim of this study was to compare the current recommendation to a suction calibration system, VISIGI 3D™, that performs all functions with one insertion, under a safe level of suction.

Materials/Methods
Unlike the regular bougie, anesthesiologist inserts VISIGI 3D™ at the beginning of the case and only removes it once after stapling and leak testing is complete.

Comparison 1: Visual Confirmation of the Position
Primary sleeve gastrectomies were performed with a bougie or a VISIGI 3D™ in a randomized, alternating order. Intraoperative pictures of the stomach prior to the first staple firing were captured in each case. (Fig. 3)

Comparison 2: Operating Time Savings
Tissue for complete stomach decompression, positioning, stapling, leak testing, and the total operating time, excluding complications, were obtained. (Fig. 4, Fig. 6)

Comparison 3: Staple Line Straightness
Three measurements were made at three locations on the inflated, excised gastric specimen: circumference, distance from the greater curvature to both the anterior and posterior (Fig. 2). The variance of deviation from the midline at these locations was calculated for each specimen. (Fig. 5)

Comparison 4: Clinical Risk Reduction
The frequency of device movements for both groups were recorded. This record includes the number of intraluminal devices inserted as well as the number of times the surgeon inquired about the status/location of the device. (Fig. 7)

Results
In a single-center randomized study, 26 patients were enrolled for a sleeve gastrectomy. The patient group consisted of 15 women and 11 men. The mean age was 36.8 years, ranging from 14 to 74 years. The overall BMI of patients averaged 45.3 kg/m².

Conclusion
Comparison 1: The location of the bougie was difficult to ascertain, whereas VISIGI 3D™ clearly delineated and indicated proper staple placement.

Comparison 2: VISIGI 3D™ significantly decreases the time needed to complete each step of a sleeve gastrectomy, and therefore total operating time.

Comparison 3: VISIGI 3D™ utilizes suction to maintain gastric placement, which equalizes tension on both sides of the stomach, thereby reducing corkscrewing.

Comparison 4: Fewer tube insertions may reduce esophageal damage and accidental tube stapling.

Acknowledgement and References

Presented at:
19th World Congress of the International Federation for the Surgery of Obesity and metabolic disorders (IFSO2014).
5th International Consensus Summit for Sleeve Gastrectomy (ICSSG).
August 26-30, 2014
Montreal, Canada